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SUMMARY 

This paper describes general methodology that allows one to extend Carnot efficiency of 
classical thermodynamic for zero rate processes onto thermodynamic systems with finite rate. 
We define the class of minimal dissipation processes and show that it represents 
generalization of reversible processes and determines the limiting possibilities of finite rate 
systems. The described methodology is then applied to microeconomic exchange systems 
yielding novel estimates of limiting efficiencies for such systems. 
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LIMITING POSSIBILITIES OF HEAT ENGINES 
One of the basic results in thermodynamics, obtained by Sadi Carnot, is the limiting 
value of heat engine's efficiency. Efficiency understood as the ratio of the mechanical 
work A to the amount of heat energy Q+ removed from the hot source [1]. This limit 
turns out to be equal to 
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where T+ and T- are absolute temperatures of the hot and cold sources in heat engine cycle. 

The value of η0 was found by Carnot essentially intuitively, because he did not know 
the energy conservation law and believed in the thermogen theory. Note that the 
value  η0 does not depend on such characteristics of the engine as its size, the 
material of heat-exchange surfaces, the equation of state of the working body, etc. If 
Carnot were to consider this problem from the viewpoint of modern thermodynamics 
he would cast it as the problem of finding the optimal dependence of working body's 
temperature on time T(t) subject to the cyclic changes of the working body's state and 
the optimal cycle's period τ (Figure 1). He would arrive at the following optimal 
control problem: 
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Figure 1. The structure of thermodynamic system (heat engine). 

where the time of contact between the working body and the hot reservoir is γ⋅τ and 
the time of contact between the working body and the cold reservoir is denoted as (1 
– γ)τ; q+ and q- are the heat fluxes from the hot and to the cold reservoirs 
correspondingly. From the energy conservation and cyclic changes of working body's 
state it follows that the denominator in (2) is equal to the obtained work A. Because 
of the same cyclic condition the maximum in (2) is to be found subject to constraint 
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where ∆Sp is the change of the working body's entropy during a cycle and 0 ≤ γ ≤ 1. 

The problem (2) and (3) does not have a solution, that is, for natural laws of heat 
transfer q+ and q-, η increases monotonically when τ increases, and the optimal 
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temperature of the working body over the interval γ⋅τ tends to T = T+, and over the 
interval (1 – γ)τ to T = T-. Meanwhile, the value of η is bounded and its limit 
(supremum) turns out to be equal to η0. 

Thus, Carnot's intuition helped him to bypass succesfully these mathematical 
difficulties and to obtain the correct result. This result is valid for any q+ and q-, 
which obey the natural requirement that the heat flux is directed from the body with 
the higher temperature to the body with the lower temperature. 

A number of other problems can be formulated for the system, shown in Figure 1. Namely: 
1. What is the maximal power, that can be obtained in a heat engine? 
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The maximum in (4) is to be found subject to constraint (3). 
2. What is the maximal value of a heat engine's efficiency  η, when its power n0 is fixed? 

If the solution of the Problem 1, nmax, is found then the fixed power n0 must obey inequalities 
 0 ≤ n0 ≤ nmax, (5) 
If the left inequality is violated then the cycle is already not a cycle of a heat engine 
and if the right inequality is violated then the solution does not exist. 

The first of these problems was solved by Novikov [2], and then independently and 
much later by Curson and Albborn [3] for the Newton law of heat transfer 
 q+ = α+(T+ – T),     q- = α-(T – T-). (6) 
The coefficients α+ and α- in these expressions implicitly describe the size of the heat 
engine. Problem 2 was solved for the Newton law and other laws of heat transfer in [4, 5]. 

Mathematical features of the Problems 1 and 2 are due to the averaging operations in 
their formulations. Indeed, in the maximal power problem it is required to choose a 
temperature of the working body T(t), such that the average value of the heat flux q 
(after taking into account its sign), which is supplied to it, is maximal, subject to zero 
average change in the working body's entropy. In the maximal efficiency problem it 
is required to minimize the average value of the flux q+ subject to constraints on the 
entropy of the working body and the fixed average power. Such problems are called 
averaged nonlinear programming problems [6]. As a rule, they have an infinite set of 
solutions, each of which switches between not more than k + 1 so-called ''basic'' 
values, where k is the number of averaged conditions. For example, since in the 
maximal power problem there is only one averaged condition (3), the temperature of 
the working body in the optimal cycle takes not more than two values T1 and T2 < T1. 
Thus, for any law of heat exchange the optimal cycle includes two isotherms and the 
instant (adiabatic) temperature switches between them. Here T1 < T+, and T2 > T-. The 
basic values T1 and T2 are determined jointly with the fractions γ and (1 – γ)τ of the 
cycle's period τ (when T(t) = T1 and T(t) = T2 and the working body makes contact 
with the hot and cold reservoir correspondingly) by solving the auxiliarly nonlinear 
programming problem (without averaging). 

In the maximal efficiency problem with the fixed power n = n0 there are two averaged 
conditions – one on the average entropy rate of the working body and the other on the 
average power. Therefore the number of isotherms in the optimal cycle does not 
exceed three. But for the Newton law of heat exchange (6) this number is two and the 
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cycle has the same form as the maximal power cycle (two isotherms and two adiabats) 
but with different values of T1 and T2 and with different time fractions γ and 1 – γ. 

Let us write down the solution of the limiting power problem 

 nmax = ( )2

0 −+ − TTα , (7) 
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The efficiency that corresponds to this power is 
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In the limiting efficiency problem with fixed power n0 < nmax this value is 
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and α0 corresponds to (8). The optimal fraction γ of the cycle period when the 
working body stays in contact with the hot reservoir is the same in both problem 
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Figure 2. The area of the feasible regimes of the heat engine. 

It is interesting to note, that if the power of the heat engine is fixed then it is possible 
to find not only its maximal but also its minimal efficiency. Here it is possible to 
construct the feasible area of the heat engine in the 2-D space where the coordinates 
are +q  (the average per cycle value of q+) and the average power n. This is the dashed 
area in Figure 2. Its boundary, which is denoted here with the solid line, corresponds 
to cycles that include two isotherms and two adiabats. The dependence between n and 

+q , which corresponds to the infinite heat transfer coefficients (that is, to an infinitely 
large engine) is denoted with the dotted-dashed line. Here the processes approach 
reversible ones and the efficiency (the tangent of the slope of dotted-dashed line) is 
equal to η0. The efficiencies, given by the expression (10), correspond to the slopes 
of the limiting power curve for the point that is located to the left of the maximum. 
The difference between the dotted-dashed curve and the boundary of the dashed area 
characterizes the irreversibility of the processes in the heat engine. Later we will 
show that this difference is equal to the product of the entropy production in the 
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system σ on the temperature T-. Thus the problem of efficiency maximization 
corresponds to the minimization of the entropy production (dissipation) in the system 
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MINIMAL DISSIPATION PROCESSES 
The study of the limiting possibilities of heat engines led to the development of the 
new branch of thermodynamics - finite-time thermodynamics (optimizational 
thermodynamics). This branch of thermodynamics studies the limiting possibilities of 
thermodynamic systems of various types where the average rates of heat and mass 
fluxes are fixed. One of the ways to fix these fluxes is by fixing the duration of the 
process when the values of all or some of the state variables are fixed. Let us describe 
the general schema of solving the problem of determining the feasible area in the 
space of parameters of the thermodynamic system. 

The state of a system is described by its internal energy U, the amount of mass 
(vector) N with components Ni, (i = 1, …, m) and the entropy S. In the general case, 
the system can be open, that is, an exchange of mass, energy and entropy between the 
system and the environment can takes place.The changes to U, N and S are 
determined by the mass, energy and entropy balances: 
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Here gj and gα, j are the fluxes of mass that are driven by diffusion and conduction; hj 
and hα, j are the specific enthalpy of these fluxes; qj are the heat fluxes; n is the 
produced work ; xij is the concentration of the i-th component in the j-th flux; kij is the 
stoihiometric coefficient of the i-th component in the ν-th reaction; the rate of this 
reaction – Wν; sj is the specific enthalpy of the j-th flux; µα, ij is the chemical potential 
of the i-th component in the j-th diffusion flux. 

If the state of the system does not change, then the right-hand sides of the balance 
equations (13) – (15) are equal to zero for any t. If the state of the system changes 
cyclically with the period τ, then the integrals over the time interval [0, τ] of the 
right-hand sides of equation (13) – (15) are equal to zero, because 
 U(τ) = U(0),     N(τ) = N(0),     S(τ) = S(0).  
Let us emphasize that the last of the balance equations includes the entropy 
production σ, which is non-negative according to the second law of thermodynamics. 
Only such trajectories and such stationary states in the state space for which σ ≥ 0 can 
be realized. This limits the possible states of the system. For example, for a heat 
engine with two reservoirs of infinity heat capacity, the condition σ ≥ 0 singles out 
the area below the dashed-dotted line in Figure 2, and thus limits the efficiency to 
below η0. Indeed, if there are no exchange fluxes between this system and the 
environment then the entropy increment is equal to the change of the sources' 
entropies during the cycle 
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The first term here is the entropy increment of the cold reservoir when the heat is 
supplied to it; the second term is the reduction of the hot reservoir's entropy when 
heat is removed from it; and σ is the entropy production in the system. From the 
energy balance it follows that 
 Q+ – Q- = A. (17) 
After elimination of Q- from (16) and (17), and denoting the ratio A/Q+ as η, from the 
condition ∆S ≥ 0 it follows that 
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If the state of the system is described by the equations (13) – (15) and some 
additional constraints are imposed on the initial and final states of the system and on 
the duration of the process τ, then it is possible to find such phase trajectories among 
all feasible trajectories for which the average entropy production (dissipation) is 
minimal and equal to minσ  > 0. 

The condition 
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τ
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narrows down the area of the system's feasible phase trajectories. Thus, the condition 
of the fixed power of the heat engine leads to the inequality 

 )(≥S∆ 0min nστ ,  
and instead of the inequality (18) we get 
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Thus, the estimate of the limiting possibilities of a thermodynamic system is reduced 
to finding the minimal dissipation in the system subject to given constraints. 

In order to find an estimate of the minimal dissipation in the system with the fixed 
rate of the processes in it, it is reasonable to solve the minimal dissipation problem 
for each of the possible processes (heat exchange, mass transfer, chemical reactions, 
throttling, etc.). Then the dissipation in a complex system can be estimated by 
decomposing its internal processes into a set of minimal dissipation processes. In 
some sense the class of such processes extends the class of reversible processes by 
taking into account the non-zero rate of their processes. Let us first describe how the 
conditions of minimal dissipation are derived for the heat exchange and then we will 
generalize this derivation to other processes. A heat-exchange process between two 
bodies with the temperatures T1 and T2 is accompanied by entropy production 
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where q is the heat exchange law. 

Assume that T2 is the control and that T1 changes according to the equation 
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where for simplicity we assume that the heat capacity C1 is constant. The duration of 
the process is fixed and it is required to change the temperature T1 from T10 to 1T  in 
such a fashion that the system's entropy increment is minimal 
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The problem (22) and (23) is an optimal control problem. Its conditions of optimality 
can be easily derived by using the fact that the sign of the function q coincides with 
the sign of the difference T10 – 1T  and does not change over the interval [0, τ]. After 
transformation which replaces the time with the temperature of the first flux, that is, 
dt with dT1 = –[C1(T1)/q(T1, T2)]dt, the problem takes the following form 
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subject to the constraint 

 τ=∫
1

10

1
21

11 d
),(

)(T

T

T
TTq

TC . (25) 

The condition of optimality for the problem (24), (25) has the following form 
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That is, the optimal temperature T2 has to depend on T1 in such a way that for any 
instance of time the left-hand side of the equation (26) is constant. The value of the 
constant M is to be found after substitution of the dependence T2

*(T1, M) from (26) 
into the equation (25). 

From (26) it follows that for the linear heat exchange (6) in the minimal dissipation 
process the temperatures ratio T1/T2 must be constant. Let us note that in a counter-flux 
heat-exchanger the minimal dissipation process can be realized, that is, here it is 
possible to choose a ratio of the fluxes' input temperatures and rates such that for the 
heat exchange law (6) the heat exchange operates with the minimal dissipation (26) [6]. 

Let us generalise the above-described approach to the abstract thermodynamic 
process where there is a key flux J, which depends on intensive variables 
(temperatures, pressures, chemical potentials, etc) denoted as U1 and U2 for the 1st and 
2nd contacting systems correspondingly. It is assumed that U1 and U2 are scalars that 
vary over time or over the length of the apparatus. The function J(U1, U2) is such that 
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The difference between the values of U1 and U2 generates driving forces X(U1, U2), 
which obey the conditions (27). For example, the driving force in a heat exchange 
process is the difference (1/T2 – 1/T1), and in mass transfer process the driving force is 

 [ ])()(1
2211 CC
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where Ci is the concentration of the key component and µi is the chemical potential, 
which depends on this concentration. The dissipation here is 

 .mind),(),(1

0
2121∫ →=

τ

τ
σ tUUXUUJ  (28) 

Because J and X obey the conditions (27), σ  ≥ 0. Here the equality holds only if 
U1(t) = U2(t). 

The minimal dissipation process is defined as a process with the given average rate of flux 

 JtUUJ =∫
τ

τ 0
21 d),(1  (29) 

where σ  is minimal. Here it is assumed that U2(t) is the control variable and U1(t) 
changes in accordance with the properties of the thermodynamic system as 
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The right-hand side in this equation is sign definite. 

Derivations similar to the ones used above yield the following optimality conditions 
for the problem (28) – (30) 
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The value of the constant in (31) is to be found from (29). 

The conditions of minimal dissipation in heat exchange (26) follow from (31). In 
particular if the ratio ∂X/∂U2 to ∂J/∂U2 is constant then the conditions of minimal 
dissipation require the dependence U2

*(U1) such that the flux is constant. 

The minimal dissipation problem can be also solved for vector fluxes, vector driving 
forces and vector variables U1 and U2. In the vicinity of equilibrium the fluxes and 
driving forces relate to each other via the Onsager equation 
 J = AXT,  
where A is a positively definite matrix of phenomenological coefficients. It is easy to 
see that in this case the solution of the minimal dissipation process corresponds to 
constant driving forces. Note that in vector case it is possible that the averaged values 
of not all but only some of J components are fixed. 

Separation process are among the largest energy consumers. The dependence of the 
energy consumption for separation of one mole of a binary (two-component) mixture 
without losses into the environment, in an infinitely large apparatus and in infinitely 
long time (that is, in a separation process that is close to reversible) on the 
concentration X of the first component is shown in Figure 3 with the solid line. 

The calculations [5] give the characteristic dependence of minimal energy 
consumption in separation over finite time (which corresponds to the minimal 
dissipation process) that is shown in Figure 3 with the dashed line. Thus, for poor 
mixtures (X → 0, X → 1) the condition of the non-zero rate of separation leads to the 
jump of the lower bound on energy consumption. This is consistent with the fact that 
the energy consumption for uranium isotope separation exceeds the reversible 
estimate by a factor of hundreds of thousands [8]. 
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Figure 3. The characteristic dependencies of the reversible and irreversible energy 
consumption of separation on key component concentration. 

OPTIMAL PROCESSES IN MICROECONOMICS 
Economic systems, where exchange of commodities and capital between consumers 
and producers takes place, are in many respects similar to the thermodynamic systems. 
As in thermodynamics, the system's variables can be divided into two categories: the 
extensive variables, which are proportional to the system's size, and intensive 
variables, that do not depend on the size of the system. The capital and stocks of 
commodities are extensive variables and the prices that describe how valuable the 
commodities are for the system (commodity estimates) are the intensive ones. 

In thermodynamics one considers three classes of systems: systems with finite 
capacities, reservoirs and working bodies. In a system with finite capacity and 
constant size the intensive variables depend on its extensive ones. For example, 
temperature is determined by energy. In reservoirs the amount of energy is so high 
that their intensive variables can be considered constant (the heat capacity is infinite). 
And finally the intensive variables of the working bodies can be controlled, for 
example, by controlling their size. Similarly in economics one can define systems 
with finite capacities, with infinite capacities and intermediaries. For the finite 
capacity system the commodity estimate is determined by its current stock; for 
infinite capacity system this estimate is constant and finally an intermediary itself 
determines the price it is offering for buying and selling. 

The analogy between reversible thermodynamics and economics was emphasised by 
Samuelson [9], Lihnerowicz [10], Rozonoer [11]. We will consider irreversible 
process in microeconomics [12, 13] and their optimization. 

 
Figure 4. The structure of economic system with intermediary. 
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LIMITING POSSIBILITIES OF AN INTERMEDIARY 
We consider a system (Figure 4) that consists of two markets and an intermediary, 
which buys commodity on the first market and sells it on the second. The commodity 
estimates on these markets are P- and P+ > P- correspondingly. P1 and P2 denote the 
prices of purchasing and selling that are offered by the intermediary. q-, q+, g+ and g- 
denote the fluxes of capital and commodity. Subscript (+) corresponds to the fluxes 
that enter the intermediary and (–) to these that leave it. n denotes the flux of the 
capital produced. 

The fluxes g+ and g- depend on the relative values of the commodity price and the 
commodity estimate such that 
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and the capital fluxes are 
 q- = P1g+,     q+ = P2g–. (33) 

Let us find the limiting possibilities of the intermediary, that is, the maximal amount of 
capital per unit of the initial investment and the maximal rate of profit (rate of flux n) 
that can be achieved in this system. The schema of the solution process here is similar 
to the one used to solve heat engine's maximal efficiency and maximal power problems. 

The balances on the commodity and capital of the intermediary are 
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After elimination of q+ we get the profit per unit of expenses 

 1
1

2 −==
− P

P
q
nη . (35) 

η attains its maximum η0 at P2 = P+, P1 = P-, so 
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However the fluxes of commodities and therefore the rate of profit n here are 
infinitely small. 

Let us find out the limiting value of the profit flux nmax for the linear dependencies 
 g+ =  α-(P1 – P-),     g- = α+(P+ – P2). (37) 
The problem that determines nmax takes the following form 
 n = q+ – q- = α+P2(P+ – P2) – α-P1(P1 – P-)→

21 ,
max

PP
. (38) 

subject to constraint 
 α-(P1 – P-) = α+(P+ – P2). (39) 
The solution of this problem leads to the following result 
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The characteristic dependence n(q-) is shown in Figure 5. 

 
Figure 5. The dependence of the limiting profit on the expenses of the intermediary. 

Let us introduce the notion of capital dissipation as the expenses of the intermediary 
caused by establishing the commodity flux g. Indeed, if the price that is paid by the 
intermediary for the commodity is P- then its expenses are g+⋅P- and in reality the 
intermediary spends g+⋅P1 for buying and the difference 
 σ1 = g+(P1, P-) (P1 – P-).  
represents the trading expenses during buying. Similarly 
 σ2 = g-(P+, P2) (P+ – P2).  
describes the trading expenses in a selling process. Because the fluxes of commodity 
are the same g1 = g2 = g the profit is 
 n = g(P+ – P-) – (σ1 + σ2) = g(P+ – P-) – σ. (41) 
If α+ and α- tend to infinity then the dependence of n on q- tends to the dashed line in 
Figure 5. For finite α+ and α- an increase in q- leads to an increase in dissipation σ. 

EQUILIBRIUM IN OPEN ECONOMIC SYSTEMS 

Exchange fluxes emerge in a non-uniform economic system, which include 
subsystems with different commodity estimates,. If a non-uniform system is insulated 
then these fluxes lead it to an equilibrium, where the commodity estimate in all 
subsystems are the same. If commodity exchange between the system and the 
environment takes place then in a stationary regime this estimate differs from the 
estimate at equilibrium. Here the commodity is re-distributed between subsystems so 
that a new distribution is established. This new distribution is determined by the 
commodity stocks, the commodity estimates (determined by the stocks) and the 
commodity fluxes (which are in turn determined by these estimates). 

In irreversible thermodynamics the well-known Prigogine theorem [14] states that in 
an open thermodynamic system in a stationary state in the vicinity of equilibrium the 
entropy production is minimal. 
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That is, the extensive variables (internal energy, amount of mass, etc) are re-distributed 
inside the system in such a fashion that the dissipation caused by the fluxes inside the 
system is minimal. The condition of being near equilibrium is essential because here 
the dependence of the fluxes on the driving forces can be linearized. 

A similar statement is valid for an economic system, namely: in an equilibrium in an 
open economic system, where the commodity fluxes linearly depend on the differences 
in their estimates, the stocks of commodities are distributed between subsystems is 
such fashion that the dissipation of capital σ  is minimal [15]. 

Because any non-uniform system can be decomposed into elementary units, which 
contain sequentially and parallel connected subsystems, we will demonstrate the 
validity of this statement for such units, as shown in Figure 6. 

 

 
Figure 6. The simplest structures of open microeconomic systems. 

For the sequential chain (Figure 6 (a)) the fluxes are 
 n1 = α1(P0 – P1),     n2 = α2(P2 – P0).  
and the dissipation is 

 σ = σ1 + σ2 = α1(P0 – P1)2 + α2(P2 – P0)2 =
2
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The conditions of σ minimum with respect to P0, which in turn is determined by the 
stock of commodity in the middle subsystem, lead to the equation 
 n1(P0, P1) = n2(P2, P0) = n.  
Thus, the stationarity condition of the system and the condition of minimum of σ coincide. 

For the parallel connection (Figure 6 (b)) we get 
 n1 = α1(P01 – Pc),     n2 = α2(P02 – Pc),  
 n3 = α3(P2 – P01),     n4 = α4(P2 – P02).  
Similarly to (49) the dissipation is σ = ∑4

1=
2 /

i ii αn . The conditions of its minimum on 
n1 and n2 for n1 = n3, n2 = n4, n1 + n2 = n lead to the equation 
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On the other hand, from the stationarity conditions n1 = n3 and n2 = n4 it follows 
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and the fluxes are 
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.  

Their ratio coincides with the equation (43), which is obtained from the condition of 
minimal dissipation. 

CONCLUSION 
The optimal processes in thermodynamic systems (from the viewpoint of energy 
consumption) correspond to the minimum entropy production. The thermodynamic quality 
of the processes with given productivity (rate) can be evaluated not by the value of σ 
but by the difference between the actual and the minimal-feasible entropy production. 

The irreversible processes in microeconomics are in many respects similar to the 
thermodynamic processes. The role of entropy production here is played by the 
capital dissipation, whose minimum corresponds to the stationary state of an open 
economic system. 
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OPTIMALNI PROCESI U IREVERZIBILNOJ 
TERMODINAMICI I MIKROEKONOMICI 

A. M. Cirlin i V. A. Kazakov
 Institut programiranih sustava Ruske akademije znanosti 
 Pereslav-Zaleskij, Rusija 

SAŽETAK 
U ovom radu razmotrena je opća metodologija koja omogućuje proširenje Carnotove učinkovitosti u 
klasičnoj termodinamici za beskonačno spore procese na termodinamičke procese konačnog trajanja. 
Defnirana je klasa procesa minimalen disipacije i pokazano da ona predstavlja poopćenje reverzibilnih 
procesa i određuje krajnje mogućnosti sustava u kojima se odvijaju procesi konačnog trajanja. Opisana 
metodologija je primijenjena na mikroekonomske sustave izmjene što dovodi do novih procjena 
graničnih učinkovitosti takvih sustava. 

KLJUČNE RIJEČI 
termodinamika u konačnom vremenu, procesi minimalne disipacije, procesi optimalne izmjene u ekonomiji 
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